Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 40(11-12): 1144-1163, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36576018

RESUMO

Mild traumatic brain injury (mTBI) mostly causes transient symptoms, but repeated (r)mTBI can lead to neurodegenerative processes. Diagnostic tools to evaluate the presence of ongoing occult neuropathology are lacking. In a mouse model of rmTBI, we investigated MRI and plasma biomarkers of brain damage before chronic functional impairment arose. Anesthetized adult male and female C57BL/6J mice were subjected to rmTBI or a sham procedure. Sensorimotor deficits were evaluated up to 12 months post-injury in SNAP and Neuroscore tests. Cognitive function was assessed in the novel object recognition test at six and 12 months. Diffusion tensor imaging (DTI) and structural magnetic resonance imaging (MRI) were performed at six and 12 months to examine white matter and structural damage. Plasma levels of neurofilament light (NfL) were assessed longitudinally up to 12 months. Brain histopathology was performed at 12 months. Independent groups of mice were used to examine the effects of 2-, 7- and 14-days inter-injury intervals on acute plasma NfL levels and on hyperactivity. Twelve months after an acute transient impairment, sensorimotor functions declined again in rmTBI mice (p < 0.001 vs sham), but not earlier. Similarly, rmTBI mice showed memory impairment at 12 (p < 0.01 vs sham) but not at 6 months. White matter damage examined by DTI was evident in rmTBI mice at both six and 12 months (p < 0.001 vs sham). This was associated with callosal atrophy (p < 0.001 vs sham) evaluated by structural MRI. Plasma NfL at one week was elevated in rmTBI (p < 0.001 vs sham), and its level correlated with callosal atrophy at 12 months (Pearson r = 0.72, p < 0.01). Histopathology showed thinning of the corpus callosum and marked astrogliosis in rmTBI mice. The NfL levels were higher in mice subjected to short (2 days) compared with longer (7 and 14 days) inter-injury intervals (p < 0.05), and this correlated with hyperactivity in mice (Pearson r = 0.50; p < 0.05). These findings show that rmTBI causes white matter pathology detectable by MRI before chronic functional impairment. Early quantification of plasma NfL correlates with the degree of white matter atrophy one year after rmTBI and can serve to monitor the brain's susceptibility to a second mTBI, supporting its potential clinical application to guide the return to practice in sport-related TBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Substância Branca , Ratos , Camundongos , Animais , Masculino , Feminino , Substância Branca/patologia , Imagem de Tensor de Difusão , Filamentos Intermediários , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Encéfalo/patologia , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/patologia , Lesões Encefálicas Traumáticas/complicações
2.
Brain Commun ; 4(2): fcac036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350551

RESUMO

Traumatic brain injury is increasingly common in older individuals. Older age is one of the strongest predictors for poor prognosis after brain trauma, a phenomenon driven by the presence of extra-cranial comorbidities as well as pre-existent pathologies associated with cognitive impairment and brain volume loss (such as cerebrovascular disease or age-related neurodegeneration). Furthermore, ageing is associated with a dysregulated immune response, which includes attenuated responses to infection and vaccination, and a failure to resolve inflammation leading to chronic inflammatory states. In traumatic brain injury, where the immune response is imperative for the clearance of cellular debris and survey of the injured milieu, an appropriate self-limiting response is vital to promote recovery. Currently, our understanding of age-related factors that contribute to the outcome is limited; but a more complete understanding is essential for the development of tailored therapeutic strategies to mitigate the consequences of traumatic brain injury. Here we show greater functional deficits, white matter abnormalities and worse long-term outcomes in aged compared with young C57BL/6J mice after either moderate or severe traumatic brain injury. These effects are associated with altered systemic, meningeal and brain tissue immune response. Importantly, the impaired acute systemic immune response in the mice was similar to the findings observed in our clinical cohort. Traumatic brain-injured patient cohort over 70 years of age showed lower monocyte and lymphocyte counts compared with those under 45 years. In mice, traumatic brain injury was associated with alterations in peripheral immune subsets, which differed in aged compared with adult mice. There was a significant increase in transcription of immune and inflammatory genes in the meninges post-traumatic brain injury, including monocyte/leucocyte-recruiting chemokines. Immune cells were recruited to the region of the dural injury, with a significantly higher number of CD11b+ myeloid cells in aged compared with the adult mice. In brain tissue, when compared with the young adult mice, we observed a more pronounced and widespread reactive astrogliosis 1 month after trauma in aged mice, sustained by an early and persistent induction of proinflammatory astrocytic state. These findings provide important insights regarding age-related exacerbation of neurological damage after brain trauma.

3.
Br J Anaesth ; 126(1): 256-264, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32977957

RESUMO

BACKGROUND: Whilst there has been progress in supportive treatment for traumatic brain injury (TBI), specific neuroprotective interventions are lacking. Models of ischaemic heart and brain injury show the therapeutic potential of argon gas, but it is still not known whether inhaled argon (iAr) is protective in TBI. We tested the effects of acute administration of iAr on brain oedema, tissue micro-environmental changes, neurological functions, and structural outcome in a mouse model of TBI. METHODS: Anaesthetised adult C57BL/6J mice were subjected to severe TBI by controlled cortical impact. Ten minutes after TBI, the mice were randomised to 24 h treatments with iAr 70%/O2 30% or air (iCtr). Sensorimotor deficits were evaluated up to 6 weeks post-TBI by three independent tests. Cognitive function was evaluated by Barnes maze test at 4 weeks. MRI was done to examine brain oedema at 3 days and white matter damage at 5 weeks. Microglia/macrophages activation and functional commitment were evaluated at 1 week after TBI by immunohistochemistry. RESULTS: iAr significantly accelerated sensorimotor recovery and improved cognitive deficits 1 month after TBI, with less white matter damage in the ipsilateral fimbria and body of the corpus callosum. Early changes underpinning protection included a reduction of pericontusional vasogenic oedema and of the inflammatory response. iAr significantly reduced microglial activation with increases in ramified cells and the M2-like marker YM1. CONCLUSIONS: iAr accelerates recovery of sensorimotor function and improves cognitive and structural outcome 1 month after severe TBI in adult mice. Early effects include a reduction of brain oedema and neuroinflammation in the contused tissue.


Assuntos
Argônio/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Argônio/administração & dosagem , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Inflamação/diagnóstico por imagem , Inflamação/tratamento farmacológico , Inflamação/etiologia , Imageamento por Ressonância Magnética , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Tempo
4.
Molecules ; 25(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218208

RESUMO

Astrocytes greatly participate to inflammatory and neurotoxic reactions occurring in neurodegenerative diseases and are valuable pharmacological targets to support neuroprotection. Here we used human astrocytes generated from reprogrammed fibroblasts as a cellular model to study the effect of the compound Laquinimod and its active metabolite de-Laquinimod on astrocyte functions and the astrocyte-neuron interaction. We show that human iAstrocytes expressed the receptor for the inflammatory mediator IL1 and responded to it via nuclear translocation of NFκB, an event that did not occur if cells were treated with Laquinimod, indicating a direct anti-inflammatory activity of the drug on the human astrocyte. Similarly, while exposure to IL1 downregulated glial glutamate transporters GLAST and GLT1, treatment with Laquinimod supported maintenance of physiological levels of these proteins despite the inflammatory milieu. Laquinimod also induced nuclear translocation of the aryl hydrocarbon receptor (AHR), suggesting that drug action was mediated by activation of the AHR pathway. However, the drug was effective despite AHR inhibition via CH223191, indicating that AHR signaling in the astrocyte is dispensable for drug responses. Finally, in vitro experiments with rat spinal neurons showed that laquinimod did not exert neuroprotection directly on the neuron but dampened astrocyte-induced neurodegeneration. Our findings indicate that fibroblast-derived human astrocytes represent a suitable model to study astrocyte-neuron crosstalk and demonstrate indirect, partial neuroprotective efficacy for laquinimod.


Assuntos
Astrócitos/metabolismo , Inflamação/patologia , Neurotoxinas/toxicidade , Quinolonas/farmacologia , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Degeneração Neural/patologia , Quinolonas/química , Ratos Sprague-Dawley , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Brain ; 142(7): e39, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31145451

RESUMO

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Assuntos
Acetilcisteína/farmacologia , Epilepsia/prevenção & controle , Glutationa/metabolismo , Isotiocianatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Estudos de Casos e Controles , Contagem de Células , Disfunção Cognitiva/complicações , Disfunção Cognitiva/prevenção & controle , Modelos Animais de Doenças , Estimulação Elétrica , Epilepsia/complicações , Proteína HMGB1/sangue , Hipocampo/metabolismo , Humanos , Masculino , Neurônios/metabolismo , Neurônios/patologia , Ratos , Estado Epiléptico/complicações , Estado Epiléptico/metabolismo , Estado Epiléptico/prevenção & controle , Sulfóxidos
6.
Mol Neurobiol ; 55(5): 4463-4472, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28669125

RESUMO

Insights into the dynamic changes in molecular processes occurring in the brain during epileptogenesis can substantially improve our understanding of their pathogenetic relevance. In this context, neuroinflammation is a potential mechanism of epileptogenesis which has recently been investigated in animal models by MRI or PET molecular imaging. Here, we developed an alternative and complementary molecular imaging strategy by designing a serotype 8 recombinant adeno-associated virus (AAV8) harboring promoter fragments of the GFAP or IL-1ß promoter and a luciferase reporter gene. Mice were injected intrahippocampally with rAAV8 and treated with intracortical kainic acid to induce status epilepticus (SE) and hence epileptogenesis. In vivo bioluminescence imaging combined with immunohistochemistry revealed a significant activation of the GFAP promoter 24 h and 3 days after kainate-induced SE. For IL-1ß, we identified the promoter region required for studying cell-specific induction of the promoter in longitudinal studies. We conclude that the GFAP promoter fragment represents a useful tool for monitoring the in vivo activation of astrocytes with an inflammatory phenotype during epileptogenesis, or under other pathophysiological conditions.


Assuntos
Astrócitos/patologia , Imageamento Tridimensional , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/patologia , Animais , Astrócitos/metabolismo , Genes Reporter , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Humanos , Interleucina-1beta/genética , Ácido Caínico , Luciferases/metabolismo , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , Estado Epiléptico/genética
7.
Brain ; 140(7): 1885-1899, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575153

RESUMO

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of disulfide high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented disulfide HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Assuntos
Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Epilepsia/tratamento farmacológico , Domínios HMG-Box/efeitos dos fármacos , Proteína HMGB1/sangue , Proteína HMGB1/metabolismo , Isotiocianatos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Quimioterapia Combinada , Epilepsia/metabolismo , Proteína HMGB1/biossíntese , Hipocampo/metabolismo , Isotiocianatos/farmacologia , Masculino , Degeneração Neural/dietoterapia , Neurônios/metabolismo , Ratos , Sulfóxidos
8.
Neurochem Res ; 42(7): 2089-2098, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28434163

RESUMO

The need to find measures that reliably predict the onset of epilepsy after injurious events or how the patient will respond to anti-seizure drugs led to intensive pre-clinical and clinical research to discover non-invasive biomarkers that could increase the sensitivity of existing clinical indicators. The use of experimental models of epileptogenesis and of drug-resistance is instrumental to select the most promising approaches to explore such biomarkers in the pre-clinical setting for further clinical validation. The approaches most frequently used to find clinically useful biomarkers of epileptogenesis include molecular brain imaging, EEG signal analysis and the measure of soluble molecules in biofluids which may reflect brain intrinsic events involved in epilepsy development. Among those, we focused our attention on proton magnetic resonance imaging (1H-MRS)-based analysis of astrocytic activation, and related blood biomarkers, since this cell population appears to be pivotally involved in various epileptogenesis processes triggered by differing insults. Moreover, we also investigated behavioral biomarkers by focusing on cognitive dysfunctions since this deficit represents a typical co-morbidity in epilepsy which may manifest even before the onset of spontaneous seizures. In this review article, we will report our recently published evidence supporting the utility of measuring astrocyte activation, the soluble molecules they release, and the associated cognitive deficits during epileptogenesis for early stratification of animals developing epilepsy. We will discuss the potential clinical translation of our findings for enriching the patient population in preventive clinical trials designed to study anti-epileptogenic treatments.


Assuntos
Disfunção Cognitiva/metabolismo , Epilepsia/metabolismo , Neuroglia/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/fisiopatologia , Epilepsia/fisiopatologia , Humanos , Espectroscopia de Prótons por Ressonância Magnética/métodos
9.
Pharmacol Res ; 110: 96-100, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27173399

RESUMO

The definition of the pathologic process of epileptogenesis has considerably changed over the past few years due to a better knowledge of the dynamics of the associated molecular modifications and to clinical and experimental evidence of progression of the epileptic condition beyond the occurrence of the first seizures. Interference with this chronic process may lead to the development of novel preventive therapies which are still lacking. Notably, epileptogenesis is often associated with comorbid behaviors which are now considered primary outcome measures for novel therapeutics. Anti-epileptogenic interventions may improve not only seizure onset and their frequency and severity but also comorbidities and cell loss, and when applied after the onset of the disease may provide disease-modifying effects by favorably modifying the disease course. In the preclinical arena, several novel targets for anti-epileptogenic and disease-modifying interventions are being characterized and validated in rodent models of epileptogenesis. To move proof-of-concept anti-epileptogenesis studies to validation in preclinical trials and eventually to clinical translation is a challenging task which would be greatly facilitated by the development of non invasive biomarkers of epileptogenesis. Biomarker discovery together with testing potential novel drugs would provide a major advance in the treatment of human epilepsy beyond the pure symptomatic control of seizures.


Assuntos
Anticonvulsivantes/uso terapêutico , Ondas Encefálicas/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Epilepsia/prevenção & controle , Animais , Anti-Inflamatórios/uso terapêutico , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Epilepsia/metabolismo , Epilepsia/patologia , Epilepsia/fisiopatologia , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos
10.
Neurobiol Dis ; 93: 146-55, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27173096

RESUMO

One major unmet clinical need in epilepsy is the identification of therapies to prevent or arrest epilepsy development in patients exposed to a potential epileptogenic insult. The development of such treatments has been hampered by the lack of non-invasive biomarkers that could be used to identify the patients at-risk, thereby allowing to design affordable clinical studies. Our goal was to test the predictive value of cognitive deficits and brain astrocyte activation for the development of epilepsy following a potential epileptogenic injury. We used a model of epilepsy induced by pilocarpine-evoked status epilepticus (SE) in 21-day old rats where 60-70% of animals develop spontaneous seizures after around 70days, although SE is similar in all rats. Learning was evaluated in the Morris water-maze at days 15 and 65 post-SE, each time followed by proton magnetic resonance spectroscopy for measuring hippocampal myo-Inositol levels, a marker of astrocyte activation. Rats were video-EEG monitored for two weeks at seven months post-SE to detect spontaneous seizures, then brain histology was done. Behavioral and imaging data were retrospectively analysed in epileptic rats and compared with non-epileptic and control animals. Rats displayed spatial learning deficits within three weeks from SE. However, only epilepsy-prone rats showed accelerated forgetting and reduced learning rate compared to both rats not developing epilepsy and controls. These deficits were associated with reduced hippocampal neurogenesis. myo-Inositol levels increased transiently in the hippocampus of SE-rats not developing epilepsy while this increase persisted until spontaneous seizures onset in epilepsy-prone rats, being associated with a local increase in S100ß-positive astrocytes. Neuronal cell loss was similar in all SE-rats. Our data show that behavioral deficits, together with a non-invasive marker of astrocyte activation, predict which rats develop epilepsy after an acute injury. These measures have potential clinical relevance for identifying individuals at-risk for developing epilepsy following exposure to epileptogenic insults, and consequently, for designing adequately powered antiepileptogenesis trials.


Assuntos
Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Estado Epiléptico/fisiopatologia , Animais , Astrócitos/metabolismo , Comportamento Animal/fisiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Eletroencefalografia/métodos , Masculino , Neurogênese/fisiologia , Neurônios/metabolismo , Ratos Sprague-Dawley , Estado Epiléptico/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...